
07/04/98

Castle Software Australia Page 1 of 7

White Paper: Object Databases and Jasmine Development Options
V1.00, 7 April 1998.
Peter Fallon & Paul Piko

In the Beginning…
Jasmine is the latest of many products from vendors attempting to create an Object Database Management System. So
what separates Jasmine from these other packages that few of us knew, let alone remember with any detail?

The difference is flexibility; not locking the developer into any one development language, environment, or set of
requirements. It comes with sufficient visual tools for any data administrator to pick up with ease. The database engine will
run on a variety of server systems, including Windows NT and Solaris (Unix), so it’s available to the majority of corporate
computing environments, and built to handle corporate-level loads. On top of this, you can take home the complete
database engine and development tools on a single CD free of charge allowing you to experiment and prove the technology
will work for you before committing your budget.

I want to go over some background here, and place Object Databases and Jasmine in the bigger software development
picture. As I’ve already said, Jasmine is an object-oriented database. As such all the benefits of object orientation, that
we've become familiar with in VO, are available to you, as integral part of the database. Now you can use encapsulation,
inheritance and polymorphism not only in your application programs but right through to the database. In fact your
database can now become a far better representation of the real world because it now has the ability to store the attributes,
behaviours and relationships of those complex components.

And when you use object oriented techniques to analyse your client's needs and design the data model you no longer have
to go through the "artificial" step of translating the information into a relational model.

Object Databases vs Relational Databases
In the early years of the computer industry, programming was largely an art form, requiring a lot of sheer talent. Programs
were often monolithic, and the available versions of Fortran, Cobol, PL/I, Assembler and their contemporaries did not
encourage much structure in code. A number of initiatives during the 70’s brought the programming world around to the
idea of structured programming and its advantages. Niklaus Wirth’s 1976 book: Data structures + Algorithms =
Programs being a classic example.

Differences between database entity diagramming, and the processes used to create structured programs led to the next
advance in software design. We now see that perhaps Wirth’s title could be improved to say: Data structures +
Algorithms = Objects, and that Objects + Relationships = Programs (Cossin & Husnian, CA-Technicon
Session Proceedings 1993, p415).

Structured analysis concentrates on separating data and functionality. The flow of data and the functions that operate on it
are charted and described separately. Common structured tools and processes such as dataflow diagrams, entity diagrams,
and top down decomposition will be familiar to many of you.

Object Oriented Analysis has a different focus however; it looks to the combination of data and its associated behaviour. I think
the OO approach is a more holistic one – it tries to look at the business problem as a single entity. Any units we break the
problem into should closely represent real world objects. Data and or behaviour related to the same conceptual unit should
be kept together because that’s how we naturally tend to think of them.

The major object oriented development languages around today include: C++, CA-Visual Objects, Delphi, Powerbuilder
and Smalltalk (this list isn’t complete – but they are the main PC products you will come across). Other important languages
that are object based (they are almost object oriented, but lack certain features) include: Visual Basic, and the toolsets from
Oracle and Gupta (I’m sure I’ve left some out here, so forgive me for not being exhaustive).

If we have an object oriented design for our project/application that is understood and agreed upon by both the business
client and the technical team, then there are few, if any, communications problems. This often breaks down as soon as
technical design and specification begins – as we try to make that model work using the programming and database tools at
hand.

Using any of the above objected oriented programming tools, we can continue using the results of our Object Oriented
Design (OOD); usually a set of Class descriptions and relationship diagrams, with assorted notes; and use them directly in
our application coding. Classes on paper become classes in our code – and discussions with the client on progress are easy,
as we can point to the OOD documentation and indicate directly what has been accomplished to date.

The database design is another question however. And this is where a product like Jasmine comes to the fore.

07/04/98

Castle Software Australia Page 2 of 7

Say you are designing a classic order entry invoice system. I expect that the final object designs, and thence database design
will fall into place without too much pain and anguish. This is an example where the data requirements fall straight into a
classic relational design without any trouble whatsoever. Too often however, we find ourselves struggling with the database
design component of a project. Have you ever had a system where one or more of the following has occurred:

• There has been a high percentage of multimedia data types, or binary data (eg: whole files).

• The final data design contains many small tables, generally related in aspect, and all with structures that are highly
similar, but not quite the same. Designing screens and reports for these is tedious because they all share a common
basic structure, but there are enough differences to force different screens, code… etc for each.

• The data design has been extremely difficult to arrive at, and there are problems achieving consensus with widely
different views on a suitable (normalised) database design among team members.

• The data design is forced to depend on a number of crucial programming “tricks” to work. There are few areas where
a standard (individual) SQL query is sufficient to extract the data required without programming intervention.

• Sheer complexity. Relational databases are difficult to handle and document as they get more and more complex. If the
original problem is extremely complex, simple data relationships don’t solve the business problem, and program code
becomes the only way many tables are linked, filled or used. OO techniques help with the program side, but the
database remains a problem.

• Any combination of the above, which results in a project only being feasible or achievable if you get you top, top
developers on it, who are familiar with bleeding-edge technology. Even if you proceed, there are expected problems
with maintenance and ongoing enhancements requiring the same top-notch staff.

I suggest that these are classic instances where you were perhaps forcing a round Object peg into a square Relational hole. The
business objectives were probably straightforward; complex perhaps, but they could be described in english with no
communication problems. There may even have been an original, elegant manual or paper based system that was replaced,
but the final computer system was, at the very least, awkward, and never achieved the elegance or simple functionality of
the old method!?

You may find it a useful exercise to return to one of those old systems, revisit the original analysis documents, and see what
type of Object Oriented Analysis/Object Oriented Design you can come up with. You may be surprised.

What I am getting at here is that when a project gets to the technical design and specification phase, we tend to fall back to
structured techniques. We break off into two camps: the programming camp, which looks at the code, screens and reports;
and the database camp, which constructs the database designs, generally using relational analysis, or normalisation.

Classic systems such as Order Entry/Invoice, or others with a high number crunching content (to use a stereotype) may fall
into the relational data model with ease. In fact the object/class design will have obvious similarities with the relational
database’s table structures. Many times however, the problems listed above will occur, and relational data analysis is a
struggle, or the final designs are unsatisfactory, inelegant, or forced. The cost is that a lot of code will be written to handle
the interface between application objects and database storage. This resulted in increased development time, increased
testing due to complexity, increased project costs, and a larger lifetime cost, as any subsequent changes will take longer to
implement and test.

At these times we should look to an Object Database such as Jasmine. The reason – an Object Database’s “database design” is
essentially the results of our OOA/OOD process! Using a pure Object Database can reduce this complexity, and leave you
time to deal with the complexity of the business problem at hand, which is what you should be focussed on.

Please remember one very important point. Object databases do not supersede Relational databases. Each are designed to
perform certain tasks very well (and the grey areas around the edges are mostly due to the experience of your
programmers!). Use the above rules-of-thumb as a guide to which may be the better solution in any given scenario. At the
same time, don’t confuse complexity due to scale/size with the difficulties I listed – a large system is going to be hard to
implement no matter what the database!

Jasmine, an Object Oriented Database!
Using an Object Oriented Database (OODB), the results of Object Oriented Design such as classes, instances and methods
are directly utilised. Classes become database Classes; Class relationships, especially “is kind of” relations allow us to define
Class hierarchies and an inheritance structure in our database. Properties on paper become Instance properties, Methods
become ODQL and API methods in the database.

The real decisions we are left with revolve around three issues:

1. Which objects/classes in our design have to be persistent. That is, which must be in the database, and which are only
required at runtime within our program code? If its data you previously stored in an SQL or DBF table, then its going
to become a persistent class on the Jasmine Server. Any object only required at runtime can be safely defined solely
within our application.

07/04/98

Castle Software Australia Page 3 of 7

2. Which methods will be coded into the database classes (using ODQL or API calls), and which will be coded into the
matching classes in our program code? This is a basic question of partitioning: What parts of the system should reside
on the server, and which parts should reside on the client!? Anything you previously coded as stored procedures,
database triggers (inside VO or on the database) are prime candidates for methods. Any data-intensive activity should
be done in a method so it executes on the server, and does not drag huge amounts of data across your LAN.

3. Should we be using ODQL or API-level language code for our methods? If you require API programming you need to
look for staff with C/C++ skills.

If we have problems other than these, we need to re-evaluate our analysis and design process. Just as a programming
problem may highlight poor or inadequate designs, problems integrating the design into the object database may indicate
similar issues.

Remember that there is a distinct difference between a poor design, and one that is complex simply because the business
model is complex. The business/clients should be with you every step of the way now, as you are now using a modelling
process they can easily follow with little explanation (you should still be using their terminology to describe these classes and
objects!). If you have to iterate back to an earlier phase to sort out an issue, then they must be involved just as they were the
first time.

Handover to maintenance and support staff will now be much easier, as object-oriented designs constructed early in the
project are now consistent with the entire system, programs and data alike. Reading, and understanding the original business
requirements, and then going onto the technical designs should be a much smoother transition for staff unfamiliar with the
project. If you have used OO techniques well, you should even see a reduction in maintenance costs over time, as making
changes to code or data will be a simpler process.

The paradigm shift from relational design to object oriented design for databases will take a retraining on the part of your
staff, and some time for them to see the advantages, and just how the newer schema works. I call it a paradigm shift, as it
requires technical staff to think of data storage in different terms – it’s a change in the way they approach a problem and
look for a solution. If your team is already experienced in OO techniques for coding, then you have an advantage.

This is identical to the shift required of programmers several years back when most mainstream programming languages
(such as Clipper) began offering OO extensions, and they had to change from the older structured programming techniques to
object oriented programming. There were, and still are, cries of “I don’t understand!”, as each of us waited until the penny
dropped, and we exclaimed “ohhh, but that’s so easy, that can’t be right!”.

The following table is a collection of analogies which are NOT perfect, and any purist will have problems with them.
However, they will assist you to wrap your mind around where some of the concepts fit, compared to how you may work
now with relational technology:

Object Database
Components

Relational
Equivalent

Discussion

Class Table
Class Family None There is no relational analogy for a Class Family, as it is

specifically a Jasmine concept (based on Class Heirarchy).
One analogy is if you keep separate Test and Production
copies of your database and configuration or INI files, or
separate business data and program data into different
databases. These could be separate Class Families in Jasmine.

Object/Instance Record/Row
Instance Property Field/Column
Class Property None Class Properties are generic, class level values that are not part

of any specific instance, common to the entire class. There is
no relational equivalent, excepting deliberate constructs of
data and stored procedures in separate reference tables.

Instance Method Stored Procedure Both of these are pieces of code which can affect the data
stored in the database. Here the similarity end however, as
Methods can affect information outside the database, but only
only for a particular object/instance. Stored procedures can
affect any data, but are limited to acting on the database itself.

Class Method Stored Procedure Like Class Properties, Class methods operate at a generic level
– ie: they work on the Class rather than specific instances of
it. Stored procedures can have a similar scope though this will
vary from product to product.

ODQL SQL ODQL is far more powerful an language, and methods
compile to C DLLs, so its very fast as well.

API language in
methods

Program code in
client applications.

07/04/98

Castle Software Australia Page 4 of 7

Jasmine Development Options
An important feature of Jasmine is that, in addition to providing these object oriented benefits, there are many and varied
ways for you to access and manipulate the objects stored in a Jasmine database. This provides you with many choices on
how best to meet your client's needs and gives to flexibility to solve a wide variety of problems. For this reason, “Where do I
Start?” is a common question, and a sensible one.

Do you want to produce a flashy multimedia application that can be run stand-alone or as a web browser plug-in? Then
you'd use the tool what was called JADE on the developer CD (which is now called Jasmine Studio). Do you want to access
the database in HTML pages through CGI/NSAPI? Then WebLink will do the job. Do you want to view and update the
data from a Windows application? Then the ActiveX control or the API approach might be the way to go, with the choice
of a number of languages/tools. And there's more...

The thing is, you have all these ways that you can create the solution you are trying to provide. Maybe you'll use one of
these tools, but more likely you'll use a combination of them, as best suits your needs.

Of course, whichever way you choose to write your applications, you still need to follow OO techniques to come up with
an appropriate database structure as I described earlier. You then implement your OO model using a combination of the
Jasmine Database Administrator and ODQL (the database's programming language). You create and build your classes,
define properties and write methods (in C/C++/ODQL).

The following table describes the key technologies in Jasmine, and the areas of modern application development they are
key parts of. I mention the word Key deliberately. eg: n-Tiered development will incorporate a number of elements,
including any of the programming options (Jasmine Studio, ActiveX, JAVA or API interfaces), but the key to separating
business logic from the interface is ODQL, and programming methods to execute on the server.

Technology Requirement Jasmine Options

Kiosk-style application, quick prototyping Jasmine Studio
Client Server Development Jasmine Studio

Jasmine C/C++ API
Jasmine ActiveX Control

n-Tiered Database Development – Business Logic
separated from Applications

Jasmine ODQL (Object Data Query Language)

Programming Jasmine Methods using API and
embedded ODQL.

Object Database Environment Jasmine Database
Ability to handle multimedia and complex data types Jasmine, Multimedia Class libraries ship with product
Integration with legacy SQL databases Jasmine, SQL Class libraries ship with product
Internet/Intranet development Jasmine Studio (with Netscape or Internet Explorer)

Jasmine ActiveX Control & Internet Explorer
Weblink
JAVA links to Jasmine (3 options from various parties)

Jasmine Studio
If you have the developer’s CD, or even a fully copy of Jasmine, you are probably wonder what this is. Well, it’s the
new name for the development tool previously called JADE. This is the point-and-click, no-programming-required
development environment that CA provides with Jasmine.

To me, Jasmine Studio’s prime purpose is for developing kiosk-style applications for information dissemination, or
operating electronic commerce applications. It can create traditional EXE files for distribution on a LAN, or internet
enabled application for intranet or internet use. Its power in this area cannot be underestimated; its very strength is the
fact that all business logic resides on the Jasmine server in methods – it cannot perform anything other than interface
operations and data display.

If you can completely separate the business logic from the interface of a project, and the interface is not complex, then
Jasmine Studio may be ideal for you. Certainly if you want to do any internet or intranet stuff with Jasmine, its your
first stop.

I admit, the internet is an area I am weak on at present (and I dislike writing about a subject I have not fully worked
through and created something with!). I will be attending a number of sessions on this at CA-World. See you there!

JAVA
Finding information about the JAVA interfaces is rather difficult. The best information I have is from a session I
attended at CA-Expo in Melbourne last year. The Fujitsu speaker spoke of three Java interfaces to Jasmine, all of which

07/04/98

Castle Software Australia Page 5 of 7

were produced by independent vendors: The first is known as the Persistent Java interface which consists of a runtime
library that is distributed with your Java application. It offers transparent object persistent in Jasmine.

The second is known as Java Proxies. This offer tighter integration with the Jasmine engine, database operations such as
transactions, and the data types supported in the Jasmine database than the Persistent interface.

The third interface is Jasmine Java Beans. A set of Java Beans that encapsulate Jasmine functionality have been created to
make development easier, and less messy than the first two options. It also integrates well with the latest tools and
methods used in Java development.

There was also a JDBC interface spoken of in the Jasmine launch in Australia. But I have not been able to find any
written materials to state whether that is part of the above, or a separate interface again.

If you are interested in this, look at the CA web page and speak to your local rep to find out further information. When
I get some more myself, I’ll update this paper.

ActiveX Development
ActiveX development for Jasmine is used for two goals: Application development in a traditional client-server sense,
and Internet/Intranet programming through Internet Explorer. My emphasis here is on business application
development.

The Jasmine ActiveX control provides an easy-to-use interface to the Jasmine database, avoiding all of the complexities
of the C API, ODQL programming, and the like. Of course this comes at a cost; there are many Jasmine features not
available to us directly. You can still use most of this advanced functionality, but it requires a firm understanding of
Jasmine, Object Oriented Design, and ODQL to construct the workarounds.

That said, you can still build quite complex applications using just the ActiveX control. It remains a serious option for
any development, simply because your most involved tasks are normally encoded into methods.

Any ActiveX compliant language/tool can use the Jasmine ActiveX control. Just think about how many tools and
products we are talking about here!

API Level Programming
If your development language supports standard Windows DLLs, and the data types necessary to call C functions (ie:
Pointers), then the API is a real option. Using the API you have the entire Jasmine engine at your disposal, including a
runtime ODQL interpreter (allowing ODQL statements to be constructed and executed by your program outside of
discrete methods). This goes way beyond what is possible using the Query construct present in the ActiveX control.

As you’d expect, there are definite speed advantages using the API as well as the sheer programming power. The cost
is equally obvious – complexity of programming. You have to pay far more attention to detail, memory allocation and
other factors when using the API. Whether you will opt for this approach, or to program all/most application
complexity using methods instead is a decision you will make based on Analysis/Design requirements and available
staff skills. Note that the latter approach is essential if you wish to use the ActiveX, or the Jasmine Studio for the client
end application.

CA-Visual Objects Options
CA-Visual Objects is Computer Associate’s flagship PC development language. Many of you may remember Clipper,
which was the leading xBase development language in the DOS world. Well, think of Visual Objects as Clipper’s
successor in Windows (its not the same, though the language has many similarities). Visual Objects combines the
flexibility and high level design abilities of say VB and Dephi with the low level power, true object oriented
programming and native compiler speed of C++. As such, it integrates with Jasmine rather well, and supports both an
ActiveX and API approach to development. And with the work that CA is doing in integrating VO/Jasmine, in
addition to some still to be released third party products, the distinction between a VO object and a Jasmine object will
become even less.

Piko Computing Consultants Pty Ltd has a small VO-Jasmine sample up on their web page
http://ourworld.compuserve.com/homepages/piko If you want a start on using Jasmine from VO see the
course details below.

Visual Basic Options
If you are using Visual Basic for application development, you will have designed and constructed your Jasmine
database, and placed most of the complex logic in Methods. If specific or complicated data retrieval combinations are
required, methods will be constructed for those as well in the same way you would construct stored procedures in a

07/04/98

Castle Software Australia Page 6 of 7

relational database. Visual Basic simply provides the front end to the database, and the data handling and validation
necessary to accept data entry, and provide feedback on user requests.

The above is a very cut-and-dried, and oversimplified statement. In most modern applications, the user interface is a
very complex construct. The advantage here is that a properly designed object database allows you to use Visual Basic
where it is most effective – flashy screen design and user interaction. The ActiveX interface, which is the only practical
one to use in VB, forces you to keep database interaction straightforward, and keep you focussed firmly on the client
side of the n-tiered application.

If you want a start on using Jasmine from VB see the course details below.

Jasmine Courses and Tools:
CA Development Partners Castle Software Australia and Piko Computing Consultants are pleased to announce the
following course notes are now available:

• Jasmine ActiveX Development with CA-Visual Objects
• Jasmine ActiveX Development with Visual Basic

These are the first installments in a series of courses covering Application Design and Development with Jasmine, the
industrial strength, object-oriented database from Computer Associates.

These notes combine white-paper style lecture notes with exercises designed to introduce you gradually to the ActiveX
interface to the Jasmine database engine. Work at your own pace to build an application that covers all of the major
functions you are likely to need in your own projects. Instead of puzzling out how something works by looking at the
documentation, watch it happen in your own program, and understand Jasmine faster!

Fully worked solutions (source code) are provided for all exercises.

Please contact us for Pricing and ordering details. Our details are below.

Further Courses
Drawing on their extensive experience in solving real-world business problems, Castle Software Australia and Piko
Computing Consultants will be providing courses and products designed to match the needs of application developers.

Here are some of the courses that will be available soon:

• Object Oriented Analysis and Design
• Installing and Configuring Jasmine Databases
• Jasmine Database creation and ODQL Programming
• Jasmine API development with Visual Objects

Announcing Jasmine API class library for CA-Visual Objects!!
At CA-World, we will be demonstrating a Jasmine API Class library that will provide API speed, functionality and flexibility
to CA-Visual Objects. It will include: creating VO objects that match Jasmine data objects (make your own jServer{ }
now!), ODQL programming within VO, without having to worry about C datatypes, pointers or structures. We'll also
provide all of the necessary prototypes if you want to get down and dirty as well!

There's much, more, but we want to surprise you! Talk to us at CA-World 98 and ask for a demonstration of this product,
or to peek at our course materials!

Authors:
If you've got any more questions, or would like to know about Jasmine training, course notes and tools (Jasmine and CA-
Visual Objects) please contact either of us. We are:…

Paul Piko Peter Fallon
Piko Computing Consultants Castle Software Australia
8 Hedline Place, Macleod, VIC, 3085 3/8 Reid St Ashwood, VIC, 3147
Australia Australia
Ph: (+61 3) 9432 1222 Ph: (+61 3) 9885 5184
Fax: (+61 3) 9432 1255 Fax (+61 3) 9886 0100
piko@compuserve.com pfallon@compuserve.com

07/04/98

Castle Software Australia Page 7 of 7

Copyright Notice
No part of this paper may be reproduced or transmitted in any form or by any means, electronic or mechanical, including
photocopying, recording, or by any information storage and retrieval system, without permission in writing from the
authors. For information please contact: Castle Software Australia Pty Ltd.

Trademark Acknowledgements
Jasmine™ is a trademark of Computer Associates, CA-Visual Objects 2.0® is registered trademark of Computer Associates,
Microsoft® Visual Basic® is a registered trademark of Microsoft and Microsoft® Office 97™ is a trademark of Microsoft.

All other product names and services identified throughout these notes are trademarks or registered trademarks of their
respective companies. They are used throughout these notes in editorial fashion only and for the benefit of such companies.
No such uses, or the use of any trade name, is intended to convey endorsement or other affiliation with the notes.

